In case of VoS plugins not showing up in your VST host

On some Windows installations there are no Visual C++ runtime libraries installed by default anymore. Make sure then to just install that package – for a free and safe download at microsoft.com just lookup “Visual C++ runtime 2013 download”.

sidechain linking techniques

How an audio compressor responds to stereo content depends largely on how the channel linking is implemented in the sidechain. This has a major influence on how the spatial representation of a stereo signal is preserved or even enhanced. The task of the compressor designer is to decide which technical design is most suitable for a given overall concept and to what extent the user can control the linkage when using the device.

In analog compressor designs, in addition to unlinked “dual mono” operation, one usually finds simple techniques such as summing both stereo channels (corresponding to the center of the stereo signal) or the extraction of the maximum levels of both channels using a comparator circuit implementing the mathematical term max(L,R).

More sophisticated designs improve this by making the linking itself frequency dependent, e.g. by linking the channels only within a certain frequency range. It is also common to adjust the amount of coupling from 0 to 100%, and the API 2500 hardware compressor serves as a good example of such frequency dependent implementation. For the low and mid frequency range, simple summing often works slightly better in terms of good stereo imaging, while for the mid to high frequency range, decoupling to some degree often proves to be a better choice.

The channel coupling can also be considered as a summation of vectors, which can be easily realized by sqrt(L^2+R^2). As an added sugar, this also elegantly solves the rectification problem and results in very consistent gain reduction across the actual level distributions that occur between two channels.

If, on the other hand, one wants to focus attention on correlated and uncorrelated signal components individually (both of which together make up a true stereo signal), then a mid/side decomposition in the sidechain is the ticket: A straight forward max(mid(L,R), side(L,R)) on the already rectified channels L and R is able to respond to any kind of correlated signal not only in a very balanced way but also to enhance its spatial representation.

More advanced techniques usually combine the methods already described.

TesslaPRO mkIII released

the magic is where the transient happens

The Tessla audio plugin series once started as a reminiscence to classic transformer based circuit designs of the 50s and 60s but without just being a clone stuck in the past. The PRO version has been made for mixing and mastering engineers working in the digital domain but always missing that extra vibe delivered by some highend analog devices.

TesslaPRO brings back the subtle artifacts from the analog right into the digital domain. It sligthly colors the sound, polishes transients and creates depth and dimension in the stereo field to get that cohesive sound we’re after. All the analog goodness in subtle doses: It’s a mixing effect intended to be used here and there, wherever the mix demands it.

The mkIII version is a technical redesign, further refined to capture all those sonic details while reducing audible distortions at the same time. It further blurs the line between compression and saturation and also takes aural perception based effects into account.

Available for Windows VST in 32 and 64bit as freeware. Download your copy here.

I just had to have this

  • Hardcover book with almost 300 pages
  • Covering most nerdy vintage studio classics from AKG, AMS, Dynacord, EMT, Lexicon, MXR, Quantec, Roland, ….
  • Phaser, delays, reverbs, pitch shifter, vocoder, exciter, multi fx – 68 devices presented in total

  • Great pictures (color and b&w) as well as insightful stories and statements from artists and manufacturers
  • Very fun to read or just to browse – inspirational in all regards
  • Available at Thomann for 69 smackers

next level saturation experience & still missing VoS plugins

The magic is where the transient happens.

Since a year or so I’m not just updating my audio plugin catalog but also focusing on bringing the original Stateful Saturation approach to the next level. That concept was already introduced 2010, embracing the fact that most analog circuit saturation affairs are not static but a frequency and load dependent matter which can be best modeled by describing a system state – hence the name Stateful Saturation.

The updated 2022 revision is now in place and got further refined regarding the handling of audio transient states while reducing audible distortions at the same time. It further blurs the line between compression and saturation and also takes aural perception based effects into account. This was profoundly influenced by working with audio exciters over the recent years but also by deep diving further into the field of psychoacoustics.

This important update was also the reason why I actually did hold back some of the plugin updates, namely TesslaPRO and the Thrillseeker compressors since they heavily rely on that framework. Meanwhile, TesslaPRO has been rewritten based on the framework update already and will be released early September. ThrillseekerLA and VBL are in the making and scheduled for Q4.

some FlavourMTC coverage from the net

Short review from Bedroom Producers Blog – Variety Of Sound Releases FREE FlavourMTC Passive Equalizer Plugin:

Variety of Sound is one of the legendary old-school freeware VST plugin developers, providing top-tier audio software that easily rivals the quality of paid plugins. Their incredible FerricTDS mkII is still my favorite tape saturation plugin.

If you’re looking for mixing and mastering software with a taste of analog hardware, I highly recommend checking out Variety of Sound’s plugins. It is one of the best freeware plugin collections for Windows-based music producers.

Thread over there at gearslutz gearspace –  A completely new plugin after a long streak of redesigned classics:

This sounds like analogue gear. Incredible.

… it’s a big fat lump of ‘ashish dissolved in a bucket filled with two parts honey and one part roasted sesame on a warm Himalayan afternoon. Dip yer finger, don’t forget to lick it and soon not only sesame opens …

If I’m not here …

Wherever you are, I hope you’ll enjoy the summertime!

epicPLATE released

epicPLATE delivers an authentic recreation of classic plate reverberation. It covers the fast and consistent reverb build up as well as that distinct tonality the plate reverb is known for and still so much beloved today. Its unique reverb diffusion makes it a perfect companion for all kinds of delay effects and a perfect fit not only for vocals and drums.

delivering that unique plate reverb sound

  • Authentic recreation of classic plate reverberation.
  • True stereo reverb processing.
  • Dedicated amplifier stage to glue dry/wet blends together.
  • Lightweight state-of-the-art digital signal processing.

Available for Windows VST in 32 and 64bit as freeware. Download your copy here.

The former epicVerb audio plugin is discontinued.

how I listen to audio today

Developing audio effect plugins involves quite a lot of testing. While this appears to be an easy task as long as its all about measurable criteria, it gets way more tricky beyond that. Then there is no way around (extensive) listening tests which must be structured and follow some systematic approach to avoid ending up in fluffy “wine tasting” categories.

I’ve spend quite some time with such listening tests over the years and some of the insights and principles are distilled in this brief article. They are not only useful for checking mix qualities or judging device capabilities in general but also give some  essential hints about developing our hearing.

No matter what specific audio assessment task one is up to, its always about judging the dynamic response of the audio (dynamics) vs its distribution across the frequency spectrum in particular (tonality). Both dimensions can be tested best by utilizing transient rich program material like mixes containing several acoustic instruments – e.g. guitars, percussion and so on – but which has sustaining elements and room information as well.

Drums are also a good starting point but they do not offer enough variety to cover both aspects we are talking about and to spot modulation artifacts (IMD) easily, just as an example. A rough but decent mix should do the job. On my very own, I do prefer raw mixes which are not yet processed that much to minimize the influence of flaws already burned into the audio content but more on that later.

Having such content in place allows to focus the hearing and to hear along a) the instrument transients – instrument by instrument – and b) the changes and impact within particular frequency ranges. Lets have a look into both aspects in more detail.

a) The transient information is crucial for our hearing because it is used not only to identify intruments but also to perform stereo localization. They basically impact how we can separate between different sources and how they are positioned in the stereo field. So lets say if something “lacks definition” it might be just caused by not having enough transient information available and not necessarily about flaws in equalizing. Transients tend to mask other audio events for a very short period of time and when a transient decays and the signal sustains, it unveils its pitch information to our hearing.

b) For the sustaining signal phases it is more relevant to focus on frequency ranges since our hearing is organized in bands of the entire spectrum and is not able to distinguish different affairs within the very same band. For most comparision tasks its already sufficient to consciously distinguish between the low, low-mid, high-mid and high frequency ranges and only drilling down further if necessary, e.g. to identify specific resonances. Assigning specific attributes to according ranges is the key to improve our conscious hearing abilities. As an example, one might spot something “boxy sounding” just reflecting in the mid frequency range at first sight. But focusing on the very low frequency range might also expose effects contributing to the overall impression of “boxyness”. This reveals further and previously unseen strategies to properly manage such kinds of effects.

Overall, I can not recommend highly enough to educate the hearing in both dimensions to enable a more detailed listening experience and to get more confident in assessing certain audio qualities. Most kinds of compression/distortion/saturation effects are presenting a good learning challenge since they can impact both audio dimensions very deeply. On the other hand, using already mixed material to assess the qualities of e.g. a new audio device turns out to be a very delicate matter.

Lets say an additional HF boost applied now sounds unpleasant and harsh: Is this the flaw of the added effect or was it already there but now just pulled out of that mix? During all the listening tests I’ve did so far, a lot of tainted mixes unveiled such flaws not visible at first sight. In case of the given example you might find root causes like too much mid frequency distortion (coming from compression IMD or saturation artifacts) mirroring in the HF or just inferior de-essing attempts. The most recent trend to grind each and every frequency resonance is also prone to unwanted side-effects but that’s another story.

Further psychoacoustic related hearing effects needs to be taken into account when we perform A/B testing. While comparing content at equal loudness is a well known subject (nonetheless ignored by lots of reviewers out there) it is also crucial to switch forth and back sources instantaneously and not with a break. This is due to the fact that our hearing system is not able to memorize a full audio profile much longer than a second. Then there is the “confirmation bias” effect which basically is all about that we always tend to be biased concerning the test result: Just having that button pressed or knowing the brand name has already to be seen as an influence in this regard. The only solution for this is utilizing blind testing.

Most of the time I listen through nearfield speakers and rarely by cans. I’m sticking to my speakers since more than 15 years now and it was very important for me to get used to them over time. Before that I’ve “upgraded” speakers several times unnecessarily. Having said that, using a coaxial speaker design is key for nearfield listening environments. After ditching digital room correction here in my studio the signal path is now fully analog right after the converter. The converter itself is high-end but today I think proper room acoustics right from the start would have been a better investment.

a brilliant interview