why the Thrillseeker compressors complement each other so well

Audio compressors use either a “feed forward” or “feedback” design to control the gain of an audio signal. In a feed forward compressor, the input signal is used directly to control the gain of the output signal. Essentially, the compressor compares the input signal to a threshold and reduces the gain of the output signal if the input signal exceeds the threshold. In a feedback compressor, the output signal is fed back into the compressor and used to control the gain of the input signal. So, the compressor compares the output signal to a threshold and reduces the gain of the input signal if the output signal exceeds the threshold. Both feed forward and feedback compressors can be effective at controlling the dynamic range of an audio signal, but they operate in slightly different ways and do have different characteristics in terms of their sound and response.

However, the specific sound of a device depends largely on other features of the circuit design and its components. For example, an optoelectric compressor uses a photoresistor or photodiode to detect and control the degree of gain reduction of the signal. But the make-up amplifier afterwards may contribute the most to the sound, depending on its design (tube or solid state). A variable gain tube compressor, on the other hand, uses a vacuum tube to control the gain of the compressor. The vacuum tube is used to amplify the signal, and the gain of the compressor is controlled by changing the bias voltage of the tube. This alone provides a very typical, distinctive sound that is very rich in harmonic overtones.

Both opto-electrical and variable-mu tube compressors are commonly used in audio production to control the dynamic range of a signal, but they operate in different ways and can produce different tonal characteristics. Opto-electrical compressors are known for their fast attack times and smooth release characteristics, while variable-mu tube compressors are known for their warm and smooth sound.

ThrillseekerLA mkII released

ThrillseekerLA mkII – bringing mojo back

ThrillseekerLA is an optical stereo compressor optimized for gentle mix bus coloring. It combines smoothest optical compression with vibrant coloration options that deliver a unique box tone in their own right, including thrilling bass and elegant top end void of any harshness in the mids. Its compression not only glues things together effortlessly but also enhances the stereo image by increasing depth and dimension.

10 years after – new in version 2:

  • Technical redesign with advanced opto cell emulation
  • Simplified gainstaging including automatic output gain compensation
  • Streamlined coloring options: Interstage, Tube and Loudness
  • New compress/limit option and reworked sidechain filtering

The mkII update is available for Windows VST in 32 and 64bit as freeware. Download your copy here.

Related Links:

ThrillseekerLA explained

What is needed to get clear from the start is that every compressor will sound different, the controls will act differently, and some will be better at doing certain types of compression than others. While the basic controls like ATTACK and RELEASE will have a similar function, the resulting change to the sound may be totally different.

David from www.learndigitalaudio.com has made a deep and comprehensive article about compression and ThrillseekerLA. Don’t miss to read the whole thing over there at his site which contains lots of examples and explanations. Theres also a PDF document available.

NastyVCS – I can has dynamics

NastyVCS - compression controlThe upcoming NastyVCS virtual console strip VST plug-in will feature three pristine and complementary tools to shape the audio dynamics. This allows a vast variety of different dynamic treatments and here is a very first and brief overview: [Read more…]

the beauty of opto-electrical compression

PhotoresistorOpposed to VCA, Variable-Mu or FET based approaches, opto-electrical compression takes advantage of using a light-sensitive resistor and a small light emitter (a LED or electroluminescent panel) to obtain a gain reduction voltage in the sidechain path. This technique is well-known to add some smoother gain riding characteristics to the signal because of the specific attack and release response which comes from the inertia and inherent memory effect of the photoresistor element. [Read more…]