epicCLOUDS released

epicCLOUDS – creating beautiful ambient clouds and textures

The ambient reverb is specifically designed to emulate the reverberation characteristics of large, open spaces or natural environments. It aims to create a sense of immersion and a feeling of being in a larger acoustic environment, such as a concert hall, cathedral, or outdoor setting. It typically has a longer decay time compared to other types of reverb and provides a very lush and expansive sound.

By using ambient reverb in audio production or mixing, you can enhance the sense of space, depth, and realism in your recordings, making them sound more natural and immersive. It is commonly used in various genres of music, film soundtracks as well as sound design to create a desired atmospheric or spatial effect. It is one of the go-to effects in the ambient music production.

The epicCLOUDS reverb works internally with very high density settings right from the start and thus delivers very soft and even ambient textures. Nevertheless, it guarantees a high degree of clarity at all settings and avoids unwanted side-effects such as source signal masking. Special attention was paid to the perceived envelopment of the source material by implementing an end-to-end true stereo reverb design.

The plugin is available for Windows in VST and VST3 format as freeware.
Download your copy here.

epicPLATE mkII released

epicPLATE mkII – next level plate reverberation

epicPLATE delivers a modern recreation of classic plate reverberation. It covers the fast and consistent reverb build up as well as that distinct tonality the plate reverb is known for and still so much beloved today. Its unique reverb diffusion makes it a perfect companion for all kinds of delay effects and a perfect fit not only for vocals and drums.

The mkII version introduces a slick new user experience, VST3 support as well as higher quality processing.

The update is available for Windows in VST and VST3 format as freeware.
Download your copy here.

artificial reverberation: from mono to true stereo

“True stereo” is a term used in audio processing to describe a stereo recording, processing or playback technique that accurately represents the spatial location of sound sources in the stereo field. In true stereo, the left and right channels of a stereo recording contain distinct and separate audio information that accurately reflects the spatial location of sound sources in the recording environment.

This is in contrast to fake/pseudo stereo, where the stereo image is created through artificial means, such as by applying phase shifting techniques to create the impression of stereo. True stereo is generally considered to be superior to fake stereo, as it provides a more natural and immersive listening experience, allowing the listener to better locate and identify sound sources within the stereo field. In the domain of acoustic reverberation, this is essential for the perception of envelopment.

Artificial reverberation has come a long way since its early beginnings. The first mechanical devices for generating artificial reverberation, such as spring or plate reverberation, were initially only available as mono devices. Even when two-channel variants emerged, they usually did summing to mono internally or did processing in separate signal paths, known as dual mono processing. Typically, in a plate reverb, a two-channel output signal was achieved simply by mounting two transducers on the very same reverb plate.

The first digital implementations of artificial reverberation did not differ much from the mechanical ones regarding this principle. Quite common was summing the inputs to mono and the independent tap of two signals from a single reverb tank to obtain a two-channel output. Then, explicit early reflection models were added, which were typically processed for left and right separately and merged into the outputs later to preserve a basic representation of spatial information. Sometimes, also the first reflections were just taken from a (summed) mono signal. The Ursa Major 8×32 from 1981 is a good example for this design pattern. Later, the designs became more sophisticated, and even today it is common to distinguish between early and late reverberation in order to create a convincing impression of immersion.

However, ensuring proper sound localisation through early reflection models is a delicate matter. First and foremost, a real room does not have a single reflection pattern, but a vast variety of ones that depend on the actual location of the sound source and the listening position in that room. A true-to-life representation of this would, therefore, have to be represented by a whole set of individual reflection patterns per sound source and listening position in the virtual room. As far as I know, the VSL MIR solution is the only one that currently takes advantage of this, and with an enormous technical effort.

Another problem is that first reflections can also be detrimental to the sound experience. Depending on their frequency and delay in relation to the direct signal, the direct signal can be masked and affected in terms of phase coherence so that the overall sound becomes muddy and lacks clarity. This is one of the reasons why a real plate reverb is loved so much for its clarity and immediacy: it simply has no initial reflections in this range. As a side note, in the epicPLATE implementation, this behaviour is accurately modeled by utilizing a reverberation technique that completely avoids reflections (delays).

Last but not least, in a real room there is no clear separation between the first reflections and the late reverberation. It is all part of the same reverberation that gradually develops over time, starting with just an auditory event. This also means that there is no clear distinction between events that can be located in space and those that can no longer be identified – this also continuously evolves over time.

A good example of how to realise digital reverb without this kind of separation between early and late reverberation and at the same time in “true stereo” was impressively demonstrated by the Quantec QRS back in the early 80s already. Its ability to accurately reproduce stereo was one of the reasons why it became an all-time favourite not only in the music production scene, but also in post-production and broadcasting.

Artificial reverberation is full of subtleties and details and one might wonder why we can perceive them at all. In the end, it comes down to the fact that in the course of evolution there was a need for such fine-tuning of our sensory system. It was a matter of survival and important for all animal species to immediately recognise at all times: What is it and where is it? The entire sensory system is designed for this and even combines the different sensory channels to always answer these two questions. Fun Fact: This is exactly why some visual cues can have a significant impact on what is heard and why blind tests (in both meanings) are so important for assessing certain audio qualities. See also the “McGurk Effect” if you are interested.

Have fun listening!

epicPLATE released

epicPLATE delivers an authentic recreation of classic plate reverberation. It covers the fast and consistent reverb build up as well as that distinct tonality the plate reverb is known for and still so much beloved today. Its unique reverb diffusion makes it a perfect companion for all kinds of delay effects and a perfect fit not only for vocals and drums.

delivering that unique plate reverb sound

  • Authentic recreation of classic plate reverberation.
  • True stereo reverb processing.
  • Dedicated amplifier stage to glue dry/wet blends together.
  • Lightweight state-of-the-art digital signal processing.

Available for Windows VST in 32 and 64bit as freeware. Download your copy here.

The former epicVerb audio plugin is discontinued.

everything just fades into noise at the end

When I faced artificial reverberation algorithms to the very first time I just thought why not just dissolve the audio into noise over time to generate the reverb tail but it turned out to be not that easy, at least when just having the DSP knowledge and tools of that time. Today, digital reverb generation has come a long way and the research and toolsets available are quite impressive and diverse.

While the classic feedback delay network approaches got way more refined by improved diffusion generation, todays computational power increase can smooth things out further just by brute force as well. Still some HW vendors are going this route. Sampling impulse responses from real spaces also evolved over time and some DSP convolution drawbacks like latency management has been successfully addressed and can be handled more easily given todays CPUs.

Also, convolution is still the ticket whenever modeling a specific analog device (e.g. a plate or spring reverb) appears to be difficult, as long as the modeled part of the system is linear time invariant. To achieve even more accurate results there is still no way around physical modeling but this usually requires a very sophisticated modeling effort. As in practise everything appears to be a tradeoff its not that much unusual to just combine different approaches, e.g. a reverb onset gets sampled/convoluted but the reverb tail gets computed conventionally or – the other way around – early reflections are modeled but the tail just resolves into convoluted noise.

So, as we’ve learned now that everything just fades into noise at the end it comes to no surprise that the almost 15 years old epicVerb plugin becomes legacy now. However, it remains available to download for some (additional reverb) time. Go grab your copy as long as its not competely decayed, you’ll find it in the downloads legacy section here. There won’t be a MkII version but something new is already in the making and probably see the light of day in the not so far future. Stay tuned.

ThrillseekerLA – released today

[Read more…]

introducing ThrillseekerLA

ThrillseekerLA – digital stereo leveling amplifier with truly analog qualities.

At a glance

  • Sophisticated and deep gain riding full of musical character and attitude but with virtually no inter-modulation (IM) distortion artifacts
  • Feedback compression design w/o any samplerate based delay in the loop
  • Classic input level driven two knob design with additional manual attack and release time interventions
  • Highly program dependent envelope timing adoption offering attack times ranging from “instantaneously” up to around 100ms and release times from 30ms up to several seconds
  • Mix level switch to adopt the plug-ins internal gain staging to mixing levels at around -18dBFS
  • Custom SC filter option to attenuate the SC bass response while slightly boosting the HF spectrum
  • Additional one pole (6dB per octave) SC low-cut filter adjustable from 20 to 500Hz
  • External sidechain support
  • Switchable Input/GR/Output metering display
  • Variable compression range control from 0 to 100% [Read more…]

announcing the “Thrillseeker” audio plug-in series

I’m bringing sexy back

The brand new and upcoming Variety of Sound Thrillseeker audio plug-ins series is going to be a plug-in collection premiering Stateful Saturation which is a sophisticated DSP core system for musical harmonic distortion generation based on authentic and truly stateful non-linear models.

Stateful Saturation takes advantage of some sought after analog qualities and preserves them accurately during their transfer right into the digital domain:

  • high frequency shimmer and sheen without digital harshness
  • depth and ‘3d’ imaging side effects before distortion itself becomes apparent
  • audio transient dynamics that remains vibrant and alive
  • natural and impressive bass response

Stateful Saturation opens the door for quite a number of amazing applications ranging from smooth harmonic exciters up to convincing amplifier effects and the DSP core can easily be set in context whether it’s a compressor output stage or a preamplifier circuit, just to name the two. [Read more…]